

Published on Web 04/22/2004

Highly Enantioselective Catalytic Carbon Dioxide Incorporation Reaction: Nickel-Catalyzed Asymmetric Carboxylative Cyclization of Bis-1,3-dienes

Masanori Takimoto, Yoichi Nakamura, Kaoru Kimura, and Miwako Mori*

Graduate School of Pharmaceutical Sciences, Hokkaido University, Hokkaido, Sapporo 060-0812, Japan

Received January 28, 2004; E-mail: mori@pharm.hokudai.ac.jp

Carbon dioxide (CO₂) is regarded as an important source of C1 due to its abundant reserve and low toxicity. Hence, the development of transition metal-catalyzed reactions for CO2 incorporation onto organic molecules is of great importance.¹ It is especially quite challenging to develop efficient catalytic protocols that enable carbon-carbon bond formation between CO₂ and substrates in an enantioselective manner. However, such catalytic asymmetric CO₂ incorporation processes have rarely been explored² due to the limited number of available catalytic carbon-carbon bond-forming CO₂ incorporation reactions that can be efficiently carried out under mild conditions.^{3,4} In the course of our research focused on nickelpromoted CO_2 incorporation reactions,⁵ we found that Ni(acac)₂ and PPh₃ could catalyze the addition of CO₂ and diorganozinc to bis-1,3-diene 1 under very mild conditions (eq 1).^{5c} This process was accompanied by carbocyclization of the bis-1,3-diene moiety to afford cyclic carboxylic acid 2 in a highly regio- and stereoselective manner. Here we report a transition metal-catalyzed highly enantioselective carbon-carbon bond-forming CO2 incorporation reaction based on this carboxylative cyclization.

We first screened various chiral phosphine ligands (Chart 1) in carboxylative cyclization of 1a using Me₂Zn. The reactions were carried out in the presence of Ni(acac)₂ (10 mol %), chiral phosphine ligands (10 mol % for bisphosphines or 20 mol % for monophosphines), and Me₂Zn (4.5 equiv) at room temperature under a CO₂ atmosphere (1 atm) in THF. The results are summarized in Table 1. While the reactions using common chiral ligands provided $2a^{5c}$ in relatively good yields, the enantioselectivities were moderate (entries 1-6). The highest enantioselectivity was achieved with the use of (S)-MeO-MOP as a chiral ligand.⁷ The reaction of 1a with CO₂ and Me₂Zn at room temperature in the presence of (S)-MeO-MOP afforded 2a in 83% yield and 91% ee (entry 7). The reaction performed at a lower temperature (0 °C) resulted in higher enantioselectivity (93% ee) with a slight decrease in chemical yield (entry 8). The absolute configuration of a chiral center at the C-2 position of 2a, which was obtained in this reaction, was confirmed to be S according to Kusumi's method for determining the absolute configuration of carboxylic acids.8

Encouraged by these results, asymmetric carboxylative cyclization using MeO-MOP was further investigated (Table 2). When Ph₂Zn was used as an organozinc reagent with bisdiene **1a**, phenylative cyclization proceeded in a highly enantioselective manner to afford **3a** in 81% yield and 95% ee (entry 1). In the reaction of **1a** with Et₂Zn, reductive cyclization product **5** was also obtained in 13% yield (94% ee) along with ethylative cyclization *Chart 1.* Chiral Phosphine Ligands Screened for Asymmetric Carboxylative Cyclization of Bis-1,3-diene

Table 1. Asymmetric Carboxylative Cyclization of 1a Using Me₂Zn

TsN	<i>_///</i>	1) Ni(acac) ₂ (10 mol %) ligand		6)	CO ₂ Me	
	1a	CO ₂ Me ₂ Z 2) CH ₂ N	(1 atm) In (4.5 eq), TH I ₂ , Et ₂ O	IF	H 2a	Me
entry	ligand (mo	I %)	conditions	yield, %	ee, %ª	config. ^b
1	(R)-BINAP	(10)	rt, 23 h	52	12	2S
2	(S)- (R) -BPP	FA (10)	rt, 24 h	62	11	2S
3	(R,R)-DIOP	(10)	rt, 13 h	75	55	2R
4	(S)-NMDPP	(20)	rt, 15 h	67	3	2S
5	(S)-PHOX (2	20)	rt, 33 h	38	15	2R
6	(S)- (R) -PPFA	A (20)	rt, 24 h	66	43	2S
7	(S)-MeO-M	OP (20)	rt, 4 h	83	91	2S
8	(S)-MeO-Me	OP (20)	0 °C, 24 h	71	93	2S

^{*a*} The enantiomeric excess was determined by HPLC analysis with a chiral stationary phase column. ^{*b*} Absolute configuration of chiral center at the C-2 position.

Scheme 1. Asymmetric Carboxylative Cyclization of 1e

product **4a** (57% yield, 94% ee). The similarity of the enantioselectivities of **4a** and **5** suggested that these products were produced from a same intermediate. The formation of **5** was rationalized by considering a transfer of β -hydride from the ethyl group via a β -hydride elimination process.^{5c} Bisdienes **1b**, **1c**, and **1d** were also

Table 2.	Asymmetric (Carboxylative	e Cyclization Using Me	O-MOP ^a
entry	substrate	organozinc temp, time	product ^b (yield)	ee, %
1	1a	Ph₂Zn 0 ºC, 19 h	H TsN H H H 3a (R=Ph, 81%)	95
2	1a	Et₂Zn 0 °C, 8 h	4a (R=Et, 57%) +	94
			TsN H H H F S (13%)	94
а З _М а	e0 ₂ C b0 ₂ C 1b	Me₂Zn rt, 32 h	$\begin{array}{c} \begin{array}{c} H = \begin{array}{c} C \\ M = O_2 C \\ H \end{array} \\ \hline H \\ R = \begin{array}{c} H \\ H \\ R \end{array} \\ \hline R \\ R = \begin{array}{c} H \\ R \\$	94
4	1b	Ph ₂ Zn rt, 28 h	3b (R=Ph, 89%)	92
Bn 5 Bn	0 0 1c	Me ₂ Zn rt, 36 h	$\begin{array}{c} BnO \\ BnO \\ \hline H \\ \hline \hline H \hline \hline H \\ \hline H \\ \hline H$	95
6	1c	Ph₂Zn 4 ℃, 93 h	3c (R=Ph, 80%)	90
7 0=	0 	Me ₂ Zn rt, 17 hr	$0 = 0 + \frac{H}{H} = 0$ R = Me, 90%	94
8	1d	Ph₂Zn 0 ℃, 68 h	3d (R=Ph, 83%)	95

^{*a*} All reactions were carried out in the presence of Ni(acac)₂ (10 mol %), (*S*)-MeO-MOP (20 mol %), and an organozinc reagent (4.5 equiv) under an atmosphere of CO_2 (1 atm) in THF. ^{*b*} All products were isolated as methyl esters after treatment with CH₂N₂. The absolute configurations of all products were unequivocally determined as indicated above. For details, see Supporting Information.

applicable to the asymmetric carboxylative cyclization, and the desired products having a carbocyclic five-membered ring skeleton were obtained in high yields and in high enantioselectivities (entries 3-8).

It is notable that unsymmetrical bis-1,3-diene **1e** could be used in this asymmetric carboxylation with high selectivity (Scheme 1). Methylative cyclization of **1e** in the presence of (*S*)-MeO-MOP proceeded at 4 °C with regioselective introduction of CO_2 into a less-substituted 1,3-diene moiety to afford **2e** in 88% yield and 96% ee. Phenylative cyclization of **1e** also proceeded smoothly in a regioselective manner under similar conditions to give **3e** in 87% yield and 91% ee.

In conclusion, we have developed a nickel-catalyzed asymmetric carboxylative cyclization of bis-1,3-dienes. This reaction can be carried out easily under mild conditions, and the yields and enantioselectivities are generally high. Further investigation to expand the scope of this reaction is in progress.

Acknowledgment. This work was supported by The Akiyama Foundation and by a Grant-in-Aid for Scientific Research (No. 14771235) from the Ministry of Education, Culture, Sports, Science and Technology, Japan, which are gratefully acknowledged.

Supporting Information Available: Spectral data for all new compounds, typical procedures for enantioselective carboxylations, procedures for determination of the stereochemistry, enantiomeric excess, and absolute configuration (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (1) Reviews: Arakawa, H.; Aresta, M.; Armor, J. N.; Barteau, M. A.; Beckman, E. J.; Bell, A. T.; Bercaw, J. E.; Creutz, C.; Dinjus, E.; Dixon, D. A.; Domen, K.; DuBois, D. L.; Eckert, J.; Fujita, E.; Gibson, D. H.; Goddard, W. A.; Goodman, W.; Keller, J.; Kubas, G. J.; Kung, H. H.; Lyons, J. E.; Manzer, L. E.; Marks, T. J.; Morokuma, K.; Nicholas, K. M.; Periana, R.; Que, L.; Rostrup-Nielson, J.; Sachtler, W. M. H.; Schmidt, L. D.; Sen, A.; Somorjai, G. A.; Stair, P.; Stults, B. R.; Tumas, W. Chem. Rev. 2001, 101, 953.
- (2) To the best of our knowledge, there is no report on a catalytic enantioselective carbon-carbon bond-forming CO₂ incorporation reaction, although some examples of zinc-catalyzed asymmetric alternating copolymerization of cyclohexene oxide and CO₂ have recently been reported. (a) Nozaki, K.; Nakano, K.; Hiyama, T. J. Am. Chem. Soc. 1999, 121, 11008. (b) Nakano, K.; Nozaki, K.; Hiyama, T. J. Am. Chem. Soc. 2003, 125, 5501. (c) Cheng, M.; Darling, N. A.; Lobkovsky, E. B.; Coates, G. W. Chem. Commun. 2000, 30, 2007.
- (3) Reviews: (a) Behr, A. Angew. Chem., Int. Ed. Engl. 1988, 27, 661. (b) Braunstein, P.; Matt, D.; Nobel, D. Chem. Rev. 1988, 88, 747. (c) Leitner, W. Coord. Chem. Rev. 1996, 153, 257. (d) Yin, X.; Moss, J. R. Coord. Chem. Rev. 1999, 181, 27. (e) Walther, D.; Ruben, M.; Rau, S. Coord. Chem. Rev. 1999, 182, 67.
- (4) Louie recently reported efficient catalytic procedure for [2 + 2 + 2] cycloaddition of diyne and CO₂ under mild conditions. Louie, J.; Gibby, J. E.; Farnworth, M. V.; Tekavec, T. N. J. Am. Chem. Soc. 2002, 124, 15188.
- (5) (a) Takimoto, M.; Mori, M. J. Am. Chem. Soc. 2001, 123, 2895. (b) Takimoto, M.; Shimizu, K.; Mori, M. Org. Lett. 2001, 3, 3345. (c) Takimoto, M.; Mori, M. J. Am. Chem. Soc. 2002, 124, 10008. (d) Shimizu, K. Takimoto, M.; Mori, M. Org. Lett. 2003, 5, 2323. (e) Takimoto, M. Kawamura, M.; Mori, M. Org. Lett. 2003, 5, 2599. For recent examples reported from other laboratories, see ref 6 and references cited in ref 3.
- (6) Saito, S.; Nakagawa, S.; Koizumi, T.; Hirayama, K.; Yamamoto, Y. J. Org. Chem. 1998, 64, 3975.
- (7) For reviews on enantioselective reactions using MOP derivatives, see: (a) Hayashi, T. Acc. Chem. Res. 2000, 33, 354. For preparation of MeO-MOP, see: (b) Uozumi, Y.; Kawatsura, M.; Hayashi, T. Org. Synth. 2002, 78, 1. (c) Uozumi, Y.; Tanahashi, A.; Lee, S.-Y.; Hayashi, T. J. Org. Chem. 1993. 58, 1945.
- (8) Nagai, Y.; Kusumi, T. *Tetrahedron Lett.* 1995, 36, 1853. For details, see Supporting Information.

JA049506Y